Special Angle

Special Angle

Welcome visitors..
In this post, we will explain about Special Angle. Take a look at the following table of special angles:

$0^\text{o}$ $30^\text{o}$ $45^\text{o}$ $60^\text{o}$ $90^\text{o}$
sin 0 $\displaystyle \frac{1}{2}$ $\displaystyle \frac{1}{2}\sqrt{2}$ $\displaystyle \frac{1}{2}\sqrt{3}$ 1
cos 1 $\displaystyle \frac{1}{2}\sqrt{3}$ $\displaystyle \frac{1}{2}\sqrt{2}$ $\displaystyle \frac{1}{2}$ 0
tan 0 $\displaystyle \frac{1}{3}\sqrt{3}$ 1 $\displaystyle \sqrt{3}$ $\infty$
csc $\infty$ 2 $\displaystyle \sqrt{2}$ $\displaystyle \frac{2}{3}\sqrt{3}$ 1
sec 1 $\displaystyle \frac{2}{3}\sqrt{3}$ $\displaystyle \sqrt{2}$ 2 $\infty$
cot $\infty$ $\displaystyle \sqrt{3}$ 1 $\displaystyle \frac{1}{3}\sqrt{3}$ 0
Example
Given a right angled triangle ABC at B. Length AC = 2 and angle C = $30^\text{o}$. Length AB = ....
Answer:
From the special corner table, we get: sin 30$^\text{o}$=1/2, then 1/2=AB/2 or AB=1.
Thanks for view, see you and happy learning.

Popular posts from this blog

One Variable Linear Equation

What are irrational number?

Quadratic Equation